

XVI Edizione Strumenti per la Scienza Cefalù (Pa) 25-30 luglio 2022

Immagina quel che vedi Tecniche microscopiche di imaging per la caratterizzazione strutturale e morfologica di aggregati molecolari

Nanotechnology Innovative Instrumentation venanzi@uniroma2.it

Outline

Microscopic imaging has been used as a powerful tool to elucidate structures of individual molecular assemblies with sub-nanometer to millimeter resolution.

- Using electrons for imaging: Transmission and Scanning Electron Microscopies
- Using a tip for imaging: Atomic Force Microscopy
- Using photons for imaging: Super Resolution Fluorescence Microscopy

Spatial resolution of imaging techniques and size of supramolecular assemblies

Comparison of high-resolution imaging techniques in molecular and cell biology

Technique/feature	Atomic force microscopy	Super-resolution microscopy (STED, PALM, STORM)	Transmission electron microscopy	Scanning electron microscopy
Resolution	≤1nm-50 nm*	20-50 nm	0.2-10 nm	2-10 nm
Sample preparation and environment	Sample on support; physiological (buffer solution, temperature, CO_2)	Fluorescence labelling; physiological (buffer solution, temperature, CO ₂)	Sample on grid; dehydrated (negative stain); vitrified (cryo-electron microscopy)	Freeze/critical point drying and metal shadowing
Artefacts	Tip, force, scanning	Bleaching, toxicity	Dehydration, ice crystal formation, beam damage	Dehydration, metal shadowing, beam damage
Advantages	Imaging under native conditions; no staining, labelling or fixation necessary; high signal-to-noise ratio; assessment of multiple physical, chemical and biological parameters	Access to three-dimensional cellular structures; high spatiotemporal resolution; monitoring biomolecular processes in life cells	Solves atomic structures of proteins; conformational snapshots of proteins and complexes; molecular- resolution structures within the cell	Imaging surfaces of tissues, cells and interfaces at nanometre-scale resolution
Limitations	Restricted to surfaces	Imaging restricted to fluorescence labels	No life processes	No life processes

1. Molecular self-assembly produced by noncovalent interactions provide a variety of unique 1D/2D/3D structures such as sphere, rod, fiber, tape, grid, sheet, helix, and others with a variety of sizes.

2. Due to the non-covalent nature of the molecular interactions, these structures are dynamic and transform each other. This property may be tightly associated with their functions in many cases.

3. These self-assembled materials are promising soft materials in the next generation where sustainability will be highlighted.

1. Using electrons for imaging

Electron Microscopies									
	TEM/SEM/STEM	Cryo EM	Liquid cell EM						
Spatial resolution	1-10 nm	0.2-10 nm	3-30 nm						
Sample preparation	Dried sample (stained with metal)	Vitrified, sample on grid	solution						
Advantage	High resolution	Near-atomic structure	In situ imaging						
Limitation	No in situ imaging	No in situ, thin film needed	Lower resolution						

TEM: Transmission Electron MicroscopySEM: Scanning Electron MicroscopySTEM: Scanning Transmission Electron Microscopy

De Broglie equation:

m=9.1 \cdot 10⁻³¹ kg; q=1.6 \cdot 10⁻¹⁹ C

Applying a 50kV potential:

$$\lambda = \frac{h}{mv}$$

$$E = \frac{1}{2}mv^{2} = qV = 1.6 \cdot 10^{-19} \cdot 50000 = 8 \cdot 10^{-15} J$$

$$v = \sqrt{\frac{2E}{m}} = 1.3 \cdot 10^{8} m \cdot s^{-1}$$

$$p = mv = 9.1 \cdot 10^{-31} \cdot 1.3 \cdot 10^{8} = 1.2 \cdot 10^{-22} m \cdot kg \cdot s^{-1}$$

$$\lambda = \frac{h}{p} = \frac{6.63 \cdot 10^{-34}}{1.2 \cdot 10^{-22}} = 5.52 \cdot 10^{-12} m = 5.52 pm$$

TEM

SEM

TEM vs cryo-TEM

Doxorubicine in liposome

TEM:

- a) dried without staining
- b) dried before staining
- c) negatively stained with 2% Uac

d) Cryo-TEM

white scale bars: 200nm black bars: 50 nm

2017 Noble Prize in Chemistry J. Dubochet, J. Franck, R. Henderson "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution."

Cryo-TEM: Self-assembly of amphiphilic amino acid derivatives (Fmoc-Ala/His and Z-FF)

Kinetic liquid—liquid phase separation was observed at the initial stage followed by nucleation and growth of the thermodynamically stable nanofibers from the solute rich droplets after lag-time.

Yuan C. et al. Angew. Chem. Int. Ed. 2019, 58, 18116-18123

Single particle cryo-TEM analysis of a microtubular 3D structure at a resolution of 7.9 Å

Tetrameric soybean agglutinin

Yang, G et al. J. Am. Chem. Soc. 2016, 138, 1932–1937

Single particle cryo-TEM structure of DLIIKGISVHI fibril

Molecular packing structure of DLIIKGISVHI, derived from an amyloid protein

3D reconstruction structure at a resolution of 3.7 Å of the 9 undecapeptides in the amyloid fibril

Guenther, E. L et al. Nat. Struct. Mol. Biol. 2018, 25, 311–319

Liquid Cell Electron Microscopy (LC-EM)

In LC-EM liquid samples are placed in a small space between two thin, tough, and high transmittance membranes, allowing for *in situ* time-lapse imaging of wet samples at nanometer resolution with sub-second time scale.

de Jonge, N.; Ross, F. M. Electron Microscopy of Specimens in Liquid. Nat. Nanotechnol. 2011, 6, 695–704.

LC-EM imaging of organic molecular assemblies. (A–G) Evolution of micelles in solution.

- (A) Cryo-TEM image of the initial small micelles.
- **(B)** Schematic illustration of the size evolution process.
- (C) LC-TEM image of the large micelles.
- (D-F) Potential internal structures supposed by LC-TEM image (D is not possible for the unimer).
- (G) Cryo-TEM image of the large micelles.

(H–I) Micelle fusion in solution

(H) LC-TEM time-lapse images of fusion process of two micelles.(I) Enlarged images of white square in (H).

Parent, L. R. et al. J. Am. Chem. Soc. 2017, 139, 17140–17151

Coacervate mediated vesicle formation from PEO-b-PCL

(M) LC-TEM images of the formation process of the vesicle. Scale bars: 100 nm.

(N) 30 frame average time series images of (M).

(O) Line plot intensity profiles along the white dashed line in (N).

(P) Schematic illustration of formation process of the vesicle.

Ianiro, A. et al. Nat. Chem. 2019, 11, 320–328

2. Using a tip for imaging: Atomic Force Microscopy (AFM)

G. Binning, C.F. Quate and C. Berger *Atomic Force Microscopy*, Phys. Rev. Lett. 56, 930-933 (1986)

IBM's Quantum Corral. A ring of 48 iron atoms was arranged one at a time (four steps are shown) on a copper surface using the tip of a low-temperature STM. The STM was then used to capture an image of the ring, which measures about 14.3 nm across. The iron atoms confine some of the copper's surface electrons, and this barrier forces the electrons into quantum states, visible as concentric standing waves inside the corral. *Science Vol. 262, No. 5131, October 8, 1993*.

Force Distance Atomic Force Microscopy

Phe-Phe nanotubes

 σ (stress=force per unit area) E (Young modulus) = ε (axial strain)

Comparison of Young's moduli of materials

(A) Molecular structure of EAK16-II.
(B) Schematic illustration of interaction between EAK16-II fibers and a mica surface.
(C) AFM image of EAK16-II fibers on mica.
(D) Enlarged image of a green square in (C).
(E) AFM image after three times scan at the same location as (D) showing many growing fibers.

(**F**) Lower magnification AFM image after the manipulation. Scale bars: 200 nm.

Schematic illustration of HS-AFM

Microscopy

Toshio Ando,*,^{†,‡,§} Takayuki Uchihashi,^{†,‡,§} and Simon Scheuring[∥]

High Speed-AFM images of dynamic assembly/disassembly of annexin-V 2D crystal

Disassembly by EDTA addition (Ca²⁺ sequestration)

Partial reconstruction by photoassisted release of Ca²⁺.

Miyagi, A et al. Nat. Nanotechnol. 2016, 11, 783–790

Schematic illustration of DNA origami assembly on lipidcoating mica.

Myosin V (M5-HMM) movement on actin filament captured by HS-AFM

(a,b) Successive AFM images showing processive movement of M5-HMM in 1 μ M ATP.

(c) Clips of successive images showing long processive run of M5-HMM in 1 μ M ATP (14 steps are recorded).

(d) Schematic explaining structural features of two-headed bound M5-HMM observed in the presence of nucleotides.

(e) Successive AFM images showing stepping process in 1 μ M ATP. The swinging lever is highlighted with a thin white line.

3. Using photons for Imaging: Fluorescence Microscopy

Pujals, S. et al. *Nat. Rev. Chem.* 2019, 3, 68–84 Schermelleh, L. et al. *Nat. Cell Biol.* 2019, 21, 72–84 Sahl, S. J. et al. *Nat. Rev. Mol. Cell Biol.* 2017, 18, 685–701

Using photons for Imaging: History

	Axial	resolu	tion			Lateral reso	lution			▶ 3-0	limer	nsional	•	Live-ce	ell 🕨	Tissue	e & m	ultiple	xing	► Com	binator	ial
	Stand F Lann	ding-wa SMLN E Betzi I ⁵ M ci M Gus	ve excitati 4 concept 9 oncept tafsson, DA A	GFP blink WE Moerner Agard, JW Sed	ting at	STED micros SW Hell SIM M Gustafsson	SCODY MJ R	E Be	PAL htzig, H He FPAL S He STOR es, X Zhua	3D M G M 3D Bes 8 H M Bip Bes 5 H M dS mg M H	-SIM Sustafs STO Luang, 3 blane ess, J TORN feilema	son, JW S RM X Zhuang FPALM Bewersdo M unn, M Se	Sedat orf	Time-gi JR Moffit RESOL S Jakobs Fast 3D M Gustaf Bessel E Betzig	ated ST t / SW He FT SW Hell D-SIM sson beam	ED LLS E Betzi GY Sira Excha R Jung	F al diff at, SL S inge I mann	N Balzarot J E fraction Shorte PAINT P Yin	AINFLU tti, SW H 4PI-SM 3ewersdo	X ROS eli T Xu, Y S SIMF of S Wie SIMF C Smi Mod S. Léy	E W Ji PLE ser FLUX th, B Rieg Loc éque-For	er S Stalinga
1992	2	1994			1999			20	05	2007		2009	2010		201	13	2015	5		2018		2021
4Pi co SW Hell	ncept , E Stelze	STED r SW He 4Pim SW He	concept li licroscopy li, E Stelzer	Modulate R Heintzmar I ⁵ M M Gustafsso	d exc m, C C	itation micros remer Agard, JW Sedat	CODY PO KA	intillism i Lidke, R H	microsc eintzmahr 3D CV J Lippin	opy V-STEL SW He sptP/ cott-Sch	ALM	I IPALM H Hess DH-PSI Plestur SOFI J Enderle STED-F C Eggelin	P Tinn P Tinn F 1, WE M tin FCS ng, SW	PAINT nefeld, FC Noemer A Yo Hell	Simmel iSl ork, H Shr Nobel E Betzig,	IM roff Prize C SW Hell,	ES B TIFI E Be	1 oyden F-SIM tzig istry oemer	He: s ta GI- J Li	T Mar ssian SII n, L Chen SIM opincott-S	ngeat, A 5 M chwartz, I	I RIM Sentenac
	• (Comme	ercial inst	truments	Leic	a 4Pi		API/ Zeis:	GE OMX s Elyra P/	3D-SIM ALM/SIN	A Leica	GSD	Ab Lei Zei	berior ST ica 3D ST iss Airyso	TED TED can	3i Ll Visil Yoko	.S fech iS ogawa	SIM SoRa	Zeiss	s Elyra 7 {	SIM ²	
							2006			2010		2012			2	016	2	018 20	019			
					20	03	Leica S	TED	2009 Nil Nil) kon N-S kon N-S	2011 IM TORM	GE ON Leica (MX Blaz gated \$	2014 ze A STED A E C C	Abbelight Abberior S Bruker Vul Confocal.r DNI Nano	SAFe STEDYCO tara nl RCM imager	DN Bi Ni	Ab Ge oAxial C kon N-S	200 berior M moa Insti CODIM SIM S	20 INFLUX ruments F	PRISM	

Confocal Fluorescence Microscopy Imaging of gels (early 2000)

4 µm

Kiyonaka, S. et al. J. Am. Chem. Soc. 2002, 124, 10954–10955

Scale bar: 20 µm

Nowak, A. P. et al. Nature 2002, 417, 424–428

Del Guerzo, A. t al. J. Am. Chem. Soc. 2005, 127, 17984–17985

Interpenetrating self-sorting double network

single network

3D Airyscan CLSM (Confocal Laser Scanning Microscopy) Green: peptide Magenta: lipid

Self-sorting composite hydrogel

5 µm

Time-lapse CLSM images of formation of nanofibers

In the presence of seeds

No seeds

A nucleation-elongation mechanism

Schematic illustration of formation of supramolecular gel droplets.

Bottom: 3D CLSM images of the gel droplets.

Note the fibrous networks of the gelator within the droplets.

25µm

Self-assembly of block copolymers [PFS₆₂-b-(PDMS₆₀₅-r-PMVS₂₁)]

TEM and CLSM images of 11-block cylindrical RGB micelles (length: 5 μm).

Scale bar: 5 µm (CLSM), 3 µm (TEM).

TEM and CLSM images of 7-block cylindrical RGB micelles.

Scale bar: 500 nm (TEM, left), 2 μm (TEM, right), 10 μm (CLSM, left), and 5 μm (CLSM, right)

Conventional Confocal vs. Super-Resolution Microscopies

			ST	ΈD	
	conventional confocal microscopy	SIM	2D STED	3D STED	SMLM (PALM/STORM/PAINT)
spatial resolution					
xy	~200 nm	~120 nm	~30 nm ^a	$\sim 100 \text{ nm}^a$	~20 nm
z	~500 nm	~250 nm	~500 nm ^a	$\sim 200 \text{ nm}^a$	~150 nm
imaging depth	~50 µm	~50 µm	~50 µm	~50 µm	$\sim 10 \mu m$
acquisition speed (frame ⁻¹)	1 s-1 min	100 ms-10 s	1 s-1 min	1 s-1 min	>10 min
light intensity(W/cm ²)	$10^2 - 10^3$	$1 - 10^{2}$	>10 ³	>10 ³	$10^{3} - 10^{4}$
disadvantages		prone to reconstruction artifacts	limited dye choice	limited dye choice	special buffers/dyes are required
^a Depends on intensity o	of a depletion laser.				

SIM: Structured Illumination Microscopy STED: Stimulated Emission Depletion Microscopy SMLM: Single Molecule Localization Microscopy PALM: PhotoActivated Localization Microscopy STORM: STochastic Optical Reconstruction Microscopy PAINT: Point Accumulation for Imaging in Nanoscale Topography

Sauer, M.; Heilemann, M. Single Molecule Localization Microscopy in Eukaryotes. Chem. Rev. 2017, 117, 7244-7275.

The magic tetrahedron of Super Resolution Microscopy

The resolution limit

Point Spread Function

Pointillisme

<u>Georges-Pierre Seurat</u> Sunday Afternoon on the Island of La Grande Jatte

FIONA: Fluorescence Imaging with One Nanometer Accuracy

• The light emitted by a single molecule is some hundreds of nanometers wide.

• However, the position of the molecule can be determined with 1 nm precision from a statistical analysis of the emission intensity.

Single Molecule Fluorescence

Two-photons excitation

Pulsed laser (fs)!

3D patterning of supramolecular gels by two-photon excitation

Diffraction limit

Overcoming the diffraction limit

Overcoming the diffraction limit

SMLM Single Molecule Localization Microscopy

Localization of single fuorophore

Photoswitching between on/off states

ACTIVATION

EXCITATION

BLEACHING

Photobleaching

STED images of self-sorting supramolecular nanofibers comprising (green) peptide and (red) lipid-type hydrogelators. Scale bar: 5 μ m.

STED and SMLM images of cylindrical micelles composed of PFS56-b-(PDMS775/DYE20)

Scale bars: 2 µm (TEM), 5 µm (LSCM and STED), 1 µm (inset)

Scale bars: 1 µm (TEM), 2 µm (SMLM)

STORM

STochastic Optical Reconstruction Microscopy

Conventional fluorescent microscopy

Excite all fluorophores Individual localization information cannot be detected

N-STORM processing

Activates with very low-intensity light

Excites with strong light

Activates with very low-intensity light Excites with strong light

time

Comparison of conventional (A) and STORM (B,C) images of microtubules and clathrin-coated pits (CCPs) in a cell. Science 317, 1749-1753 (2007). Microtubules with STORM (red). Inset: STORM (red) vs. conventional fluorescence (grey).

Time-dependent STORM imaging of polymers

(F) Molecular structures of a monomer and fluorescent probes and schematic illustration of the monomer exchange between the supramolecular polymers.

(G) Spatial resolution: 25 nm.
 Scale bar: 1 μm
 Albertazzi, L. et al. Science 2014, 344, 491–495

PALM: PhotoActivated Localization Microscopy

(A) ON/OFF switching of a tetraethylrhodamine derivative.

(B) Molecular structure and (C–E) 3D PALM images of a fluorescently modified polymer with a spatial resolution of 15 nm.

Aoki, H. et al. Soft Matter 2012, 8, 4390

PAINT (Point Accumulation for Imaging in Nanoscale Topography)

Fmoc-FF

peptide hydrogelator

Cy5-FF

PAINT images of the Fmoc-FF gel with spatial resolution of ca. 50 nm.

Scale bars: 2.5 µm

Scale bars: 200 nm

fluorescent probe

Fuentes, E. et al. Chem.- Eur. J. 2020, 26, 9869–9873

Microscopy vs Spectroscopy

Is vision reasoning?

Antonio, si vedono le molecole?